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Abstract

Difficulty estimation of multiple-choice ques-
tions (MCQs) is crucial for creating effective
educational assessments, yet remains underex-
plored in Indic languages like Hindi and Kan-
nada due to the lack of comprehensive datasets.
This paper addresses this gap by introducing
two datasets, TEEMIL-H and TEEMIL-K, contain-
ing 4689 and 4215 MCQs, respectively, with
manually annotated difficulty labels. We bench-
mark these datasets using state-of-the-art multi-
lingual models and conduct ablation studies to
analyze the effect of context, the impact of op-
tions, and the presence of the None of the Above
(NOTA) option on difficulty estimation. Our
findings establish baselines for difficulty esti-
mation in Hindi and Kannada, offering valuable
insights into improving model performance and
guiding future research in MCQ difficulty esti-
mation .

1 Introduction

Difficulty estimation of multiple-choice questions
(MCQs) is a growing field in educational technol-
ogy and natural language processing (NLP), driven
by the demand for personalized learning and data-
driven methods to assess student understanding and
customize educational content (Sajja et al., 2023).
Traditionally, educators manually create and cal-
ibrate MCQs, a process that is time-consuming
and subjective, leading to interest in automated
methods for generating MCQs with varying dif-
ficulty levels (Kurdi et al., 2019). Most research
in MCQ difficulty estimation focuses on language
learning through lexico-semantics or end-to-end
modeling. While these approaches show potential,
they are often limited by the diversity of MCQ for-
mats across subjects. Additionally, the majority of
studies are centered on English-language datasets
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(Yaneva et al., 2024; Veeramani et al., 2024), leav-
ing a significant gap in resources and methodolo-
gies for other languages.

For Indic languages like Hindi and Kannada, this
gap is particularly pronounced due to the scarcity
of MCQ datasets (Doddapaneni et al., 2022), which
often lack the depth and alignment with curricu-
lar needs necessary for formal educational assess-
ments (Yaneva et al., 2024). To address these chal-
lenges, we aim to (i) create MCQ datasets in Hindi
and Kannada, (ii) develop specialized datasets for
MCQ difficulty estimation in these languages, and
(iii) establish evaluation benchmarks for difficulty
estimation in Indic contexts. These efforts will
help bridge gaps in Indic educational assessments
and lay the foundation for future research in auto-
mated difficulty estimation across diverse linguistic
backgrounds.

First, building on the work of Maity et al.
(2024b), we created an educational MCQ dataset
using high school textbooks in Hindi and Kan-
nada, covering subjects such as history, sociol-
ogy, geography, economics and physical education.
The dataset includes 4215 MCQs in Kannada and
4689 MCQs in Hindi, complete with distractors
and multiple-choice options, including None of the
Above (NOTA).

Following this, each MCQ was annotated for dif-
ficulty levels similar to Liang et al. (2019), catego-
rized as easy, medium, or hard, to ensure accuracy
and consistency. Finally, we benchmarked state-of-
the-art language models, including mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020), and
IndicBERT (Kakwani et al., 2020), revealing that
Kannada presents greater challenges than Hindi,
establishing baselines for future studies on MCQ
difficulty estimation. We also provide an analysis
of the challenges encountered with these datasets
to guide future research in Indic educational as-
sessments. The dataset will be publicly released



Figure 1: Samples from TEEMIL-H dataset.

to encourage further studies in Indic languages 1.
Overall our contributions can be summarized as
follows:

• We first create a dataset of MCQs in Hindi and
Kannada from textbooks, covering a range of
educational subjects.

• We develop TEEMIL-H and TEEMIL-K datasets
with 4689 and 4215 MCQs for Hindi and Kan-
nada respectively with annotated difficulty la-
bels.

• We benchmark several state-of-the-art lan-
guage models for difficulty estimation in
Hindi and Kannada.

• We present ablation studies to identify various
challenges in MCQ difficulty estimation for
Hindi and Kannada.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work on MCQ
datasets, generation techniques, and difficulty esti-
mation methods. Section 3 details the construction
and annotation of the dataset, followed by a com-
prehensive analysis in Section 4. Section 5 presents
the experiments and results. Finally, Sections 6 and
7 conclude the paper with a discussion of limita-
tions and implications for future research.

2 Related Work

In this section, we provide an overview of works
related to existing MCQ datasets, automatic MCQ
generation, and MCQ difficulty estimation, high-
lighting the key challenges and open issues in each
area.

1The full dataset is available in https://github.com/
manikandan-ravikiran/TEEMIL.

MCQ Datasets The development of multiple-
choice question (MCQ) datasets has been cru-
cial for advancing difficulty estimation. Early
datasets like SQuAD (Rajpurkar et al., 2016), Hot-
potQA (Yang et al., 2018), and Natural Questions
(Kwiatkowski et al., 2019) focused primarily on
non-educational domains such as Wikipedia, offer-
ing valuable resources for question-answering tasks
but lacking the specific educational context needed
for pedagogical assessments. Similarly, datasets
like NewsQA (Trischler et al., 2017), which focus
on narrative content, are not tailored for educational
purposes. Many of these datasets emphasize com-
monsense inference and complex question answer-
ing (Dhingra et al., 2017; Zellers et al., 2018; Yu
et al., 2020; Sil et al., 2023). Educational datasets
like RACE (Lai et al., 2017) and CLOTH (Xie et al.,
2018) have been developed to assess reading com-
prehension in standardized tests, providing insights
into question difficulty. However, these datasets
are primarily limited to English, highlighting a sig-
nificant gap for other languages. Datasets such as
Crowdsourced MCQs (Welbl et al., 2017), Learn-
ingQ (Chen et al., 2018), ARC (Clark et al., 2018),
Textbook MCQ (Li et al., 2018) and EduQG (Had-
ifar et al., 2022) are derived from online courses
and textbooks but predominantly focus on English,
underscoring the need for more diverse linguistic
resources. Efforts to address these gaps with MCQ
datasets in Indic languages include the XOR-QA
(Asai et al., 2021), which includes Telugu as part
of its cross-lingual evaluation and Belebele dataset
(Bandarkar et al., 2023) which contains questions
in Hindi and Kannada. Despite their value, these
datasets are small, limited in scope, and lack anno-
tations for difficulty estimation.

MCQ Generation Methods for generating
multiple-choice questions (MCQs) have signif-
icantly evolved from early ontology-based (Pa-
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pasalouros et al., 2008) and dependency-based
(Afzal and Mitkov, 2013) approaches to advanced
machine learning and transformer-based models.
While these early methods were effective in con-
trolled environments, they lacked adaptability
across various subjects and contexts (Mitkov et al.,
2006). The advent of neural networks and ad-
vanced transformer models (Correia et al., 2012;
Vachev et al., 2022) has led to substantial improve-
ments in generating contextually relevant and gram-
matically correct questions, especially when mod-
els are fine-tuned on domain-specific data (Jahangir
et al., 2024). More recently, various methods have
been explored, including integrating masked lan-
guage models to enhance semantic understanding
and syntactic accuracy (Matsumori et al., 2022),
fine-tuning models like T5 on educational datasets
(Wang et al., 2023), , employing hybrid methods
(Kumar et al., 2023) that combine ontologies with
machine learning for automatic MCQ generation,
prompt-based methods (Kalpakchi and Boye, 2023;
Kıyak and Kononowicz, 2024) and multi-step large
language models (Maity et al., 2024a; Xiong et al.,
2022). However, these methods have primarily
been evaluated for English and lack adaptability
for Indic languages.

MCQ Difficulty Estimation The task of pre-
dicting the difficulty of multiple-choice questions
(MCQs) has evolved from traditional feature-based
approaches (Freedle and Kostin, 1993; Perkins
et al., 1995), which were less effective for domain-
specific problems (Yasmine H. El Masri and Baird,
2017) due to their inability to adequately capture
the complexities of varied content (Beinborn et al.,
2014; Susanti et al., 2017), to neural network mod-
els that leverage advanced techniques from vari-
ous fields (Huang et al., 2017; Hsu et al., 2018).
The introduction of transformer models has further
improved accuracy in difficulty prediction across
multiple subjects, including programming, mathe-
matics, and computer science (Zhou and Tao, 2020;
Benedetto et al., 2020). Advancements in pretrain-
ing techniques have significantly enhanced diffi-
culty estimation in math and computer science
questions (Loginova et al., 2021), and large lan-
guage models (LLMs) have also been employed
to refine difficulty prediction for USMLE medical
MCQs (Veeramani et al., 2024; Ram et al., 2024;
Dueñas et al., 2024; Rogoz and Ionescu, 2024;
Gombert et al., 2024). Beyond difficulty prediction,
some models have been applied to generate ques-
tions at specific difficulty levels (He et al., 2021;

Liang et al., 2019). However, much of this research
has focused on narrow domains and predominantly
uses English as the language of study.

3 Dataset Construction

In this section, we describe the data construction
process for the TEEMIL-K and TEEMIL-H datasets.
The construction of these datasets was a collabo-
rative effort that involved a team of two school in-
structors, two natural language processing experts,
and four students from classes 8 to 11 (Appendix
C).

3.1 Data Source

The primary challenge in developing educational
applications for Indic languages is the scarcity of
openly accessible resources. While global initia-
tives have promoted Open Educational Resources
(OER), most efforts are focused on English, leav-
ing Indic languages underserved. Moreover, many
Indian textbooks are protected by strict copyright
laws, restricting their use in educational technolo-
gies.

To address this, we first sourced textbooks for
classes 6 to 12 from the Karnataka Text Book So-
ciety (KTBS)2. These textbooks, provided in epub
format under a permissive license, were selected
for their adaptability and suitability for integration
into educational tools.

The EPUB files were converted into plain text
(TXT) format to enable more efficient processing.
Irrelevant content, such as prefaces and administra-
tive details, was manually removed to retain only
the core instructional material. For the Hindi and
Kannada datasets, a total of 22 textbooks covering
subjects like history, civics, geography, economics,
and physical education were selected. However,
due to formatting inconsistencies, the physical ed-
ucation textbooks for Hindi were excluded from
further processing. From the remaining textbooks,
approximately 15,000 paragraphs were extracted
for both Kannada and Hindi. Subsequently, two
subject-matter instructors curated around 5,000 key
paragraphs per language for MCQ generation, ad-
hering to the guidelines outlined in Appendix A.

2The Karnataka Textbook Society (KTBS) provides text-
books in multiple Indic languages through its website https:
//www.ktbs.kar.nic.in/. However, the majority of avail-
able textbooks are in Kannada and Hindi.
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3.2 MCQ Creation
Due to the lack of openly available educational
MCQ datasets in Hindi and Kannada, and to ad-
dress the inefficiencies of manual MCQ creation,
we adapted an Automated MCQ Generation frame-
work using Multistage Prompting (MSP) (Maity
et al., 2024b). The original MSP framework in-
volves four sequential stages: (a) paraphrasing, (b)
key phrase identification, (c) question generation,
and (d) distractor generation. However, MSP is
resource-intensive, primarily because it requires
separate prompts for each stage and relies on large
models like GPT-4 (OpenAI, 2023). Besides, initial
testing of MSP on Hindi and Kannada paragraphs
showed that the paraphrasing stage offered minimal
improvement in question diversity, and the distrac-
tor generation yielded similar results to simpler
single-stage approaches.

To improve the efficiency of the process, we
adapted the MSP framework by (i) removing the
paraphrasing and distractor generation stages, (ii)
merging key phrase identification and question
generation into a single prompt, and (iii) replac-
ing GPT-4 with the LLaMA-3-70B model (Tou-
vron et al., 2023), which is pre-trained on 30 non-
English languages, including Hindi and Kannada.
The updated prompt instruction is: For the in-
put paragraph <paragraph>, first identify the key
phrases <keyphrase> and using them create five
multiple-choice questions with answers in the orig-
inal language. This simplified approach improves
the efficiency of MCQ generation while maintain-
ing relevance and accuracy. Using this adapted
framework, each paragraph generated five MCQs,
producing approximately 25,000 MCQs for both
Hindi and Kannada.

TEEMIL-H TEEMIL-K
MCQ’s 4689 4215

Number of NOTA 487 132
Avg. length of answersα 18 28
Avg length of questionsα 55 54

Avg length of paragraphsα 740 593
Rememberβ 2850 2706
Understandβ 1819 1463

Applyβ 11 38
Analysisβ 10 2

Table 1: Dataset statistics of TEEMIL-H and TEEMIL-
K dataset. α: Number of characters, β: Bloom taxon-
omy statistics.

3.3 MCQ Annotation for Difficulty
The annotation process for our dataset was done in
stages, each of which is described below:

MCQ Sampling: The two instructors were
tasked with selecting one key MCQ per paragraph.
The MCQs were chosen based on several criteria:
grammatical clarity, answerability, diversity, com-
plexity, and alignment with Bloom’s Taxonomy
levels (Appendix B). This process resulted in 4689
MCQs for Hindi and 4215 MCQs for Kannada. De-
tailed statistics for this sampling are provided in
Table 1. Also the final MCQ’s consists of all the
selected subjects.

Annotator Training: The student annotators
underwent comprehensive training sessions on how
to annotate the MCQs through google sheet (Ap-
pendix C). Each student annotator was asked to
solve the MCQs and rate the difficulty as easy,
medium, or hard based on their inherent under-
standing. This method aimed to capture the natural
perception of difficulty from a student’s perspec-
tive. This process continued until each MCQ was
solved by at least two annotators.

Inter-Annotator Agreement (IAA): To eval-
uate the consistency of the annotations, an Inter-
Annotator Agreement study was conducted, where
each sample was annotated by two annotators. Co-
hen’s kappa (Fleiss and Cohen, 1973) was calcu-
lated for each language to measure the level of
agreement between the annotators. The kappa
score was 0.65 for Hindi and 0.69 for Kannada,
indicating a substantial agreement between the an-
notators.

Final Annotation: After achieving satisfactory
IAA scores, the NLP researchers proceeded with
the final annotation of the dataset. If two annota-
tors assigned the same label to an MCQ, that label
was used. In cases of disagreement, a follow-up
questionnaire (Appendix D) was discussed with
the student annotators. The questionnaire included
targeted queries to help determine the final diffi-
culty annotation. Based on the responses, the NLP
researchers assigned the final labels, resulting in
the finalized TEEMIL-H and TEEMIL-K datasets. Ex-
ample MCQ with difficulty labels are as shown in
Figure 1.

4 Data Analysis

In this section, we analyze the properties of the
TEEMIL-H and TEEMIL-K datasets. Since the esti-
mation of difficulty depends on factors such as the
options, distractors, and context, we present three
types of analysis: question analysis, option-label
analysis, and Bloom’s taxonomy analysis. Mean-



while, Table 2 compares TEEMIL with other educa-
tional MCQ datasets.

4.1 Question Analysis
We analyzed the distribution of question types in
the TEEMIL-H and TEEMIL-K datasets, each consist-
ing of multiple-choice questions (MCQs) generated
using a large language model (LLM). The average
question length is approximately 55 characters. To
understand the relationship between question types
and difficulty, we employed a heuristic method
that categorized questions based on the presence
of common interrogative words such as What, Who,
How, When, Where, Which and Why. The resulting
distribution is detailed in Appendix E.

Upon reviewing the distribution data, clear
differences emerge between the TEEMIL-H and
TEEMIL-K datasets. The TEEMIL-H dataset, which
focuses on subjects like history, civics, geography,
and economics, shows a predominance of certain
question types. Specifically, the What (2078 in-
stances), Which (1344 instances), and Who (678
instances) categories are heavily represented. This
suggests that the Hindi curriculum leans toward
questions that focus on factual recall, which may
skew the overall difficulty distribution. Notably,
there is a significant presence of How questions
(348 instances), which are typically associated with
more complex cognitive demands, but they are still
fewer in number compared to the fact-based ques-
tions.

On the other hand, the TEEMIL-K dataset, which
encompasses a broader curriculum that includes
subjects like physical education along with history
and civics, shows a different pattern. The What
category is even more dominant here, with 3173
instances. However, the Which (330 instances) and
Who (416 instances) categories are significantly less
frequent than in TEEMIL-H, reflecting a different
focus in question formulation. The How category,
which could suggest more open-ended or higher-
order thinking questions, is notably underrepre-
sented in TEEMIL-K, with only 8 instances, indi-
cating a potential focus on simpler or more direct
questions. The Other category, with 188 instances,
highlights the broader variety of questions present
in the Kannada dataset.

These differences in question distribution point
to variations in the cognitive demands of the two
curricula. The TEEMIL-H dataset’s emphasis on
fact-based questions (What, Which, and Who) likely
skews the difficulty spectrum towards either easy

or hard questions, with fewer medium-difficulty
questions. In contrast, the TEEMIL-K dataset shows
a broader mix of question types and, thus, a more
balanced distribution of difficulty levels.

4.2 Option Analysis
Following the methodology of Rodriguez-
Torrealba et al. (2022), we evaluated the quality
of generated options using several automated
metrics, including BLEU (1 to 4-grams) (Papineni
et al., 2002), ROUGE-L (Lin, 2004), and cosine
similarity (Buck and Koehn, 2016). For each
sample, scores were calculated by comparing the
correct answer with three generated distractor
options. This evaluation was repeated for all the
MCQ’s and the average scores for each language
are shown in Table 3 . Subsequently, we analyzed
the relationship between BLEU scores, question
types, and their ground truth difficulty labels.

The BLEU scores across both languages re-
vealed a consistent pattern, with TEEMIL-K MCQs
achieving higher BLEU scores than TEEMIL-H
MCQs. Specifically, TEEMIL-K BLEU-1 score
was 0.44115, compared to 0.38785 for TEEMIL-H,
and this trend persisted across all n-gram levels.
This suggests that the distractors in TEEMIL-K are
more lexically similar to the correct answers than
those in Hindi. Moreover, TEEMIL-K also exhibited
higher cosine similarity values (0.1467) compared
to TEEMIL-H (0.11975), indicating a greater con-
textual similarity between distractors and correct
answers in TEEMIL-K.

The granular analysis of BLEU scores across
question types highlights clear trends in the rela-
tionship between distractor quality and question
difficulty. Specifically, questions categorized as
How consistently exhibit the lowest BLEU scores,
averaging 0.389. This low similarity between dis-
tractors and correct answers suggests that these
questions are inherently more challenging. Con-
versely, What, Who, and When questions, which are
generally more fact-based, show moderate BLEU
scores of around 0.41. This intermediate score
corresponds to a more balanced distribution of dif-
ficulty labels, with these questions spanning easy,
medium, and hard difficulty levels. This pattern
suggests that the distractors for these questions are
more moderately challenging and not drastically
different from the correct answers, resulting in a
more even spread of difficulty levels. Finally, the
Other category of questions achieves the highest
BLEU scores, averaging 0.43. The higher similar-



Dataset Size Type Data Domain Difficulty
Estimation

LearningQ (Chen et al., 2018) 230K E document Online courses

No

OpenBookQA (Banerjee et al., 2019) 6K M paragraph textbook
TQA (Li et al., 2018) 26K M document textbook

SciQ (Welbl et al., 2017) 13K M paragraph textbook
ProcessBank (Berant et al., 2014) 0.5k M paragraph textbook

EduQG (Hadifar et al., 2022) 3K M document textbook
Social Questions (Scaria et al., 2024) 0.6K E document textbook

Tukish QG (Çagatay Akyön et al., 2021) 4K M paragraph textbook
MedicalMCQ (Yaneva et al., 2024) 0.9K M paragraph Standardized tests

YesTEEMIL (Ours) ≈8K M paragraph textbook

Table 2: Qualitative comparison of educational MCQ datasets for difficulty estimation. E: Extractive questions, M:
Multiple-choice questions.

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CS
TEEMIL-H 38.78 27.49 22.54 19.11 18.61 11.97
TEEMIL-K 44.11 31.68 26.00 22.25 14.94 14.67

Table 3: Evaluation of distractor quality in the provided
options. All values are reported as percentages.

ity between distractors and correct answers implies
that these questions tend to be easier, as reflected
by the assignment of a higher proportion of easy
labels. The closer alignment between distractors
and the correct options likely reduces the cognitive
load required to eliminate incorrect answers, thus
simplifying the overall difficulty of these questions.

4.3 Bloom Taxonomy Analysis
Bloom’s Taxonomy, which classifies cognitive
skills from basic recall to complex analysis, of-
fers a useful framework for estimating MCQ diffi-
culty. Assigning Bloom’s levels to each question
helps establish a link between cognitive demand
and difficulty. In our dataset, approximately 60% of
the questions fall under the Remember category of
Bloom’s Taxonomy (see Table 1), with the remain-
ing questions distributed across higher cognitive
levels. This distribution is consistent with findings
in educational research, which suggest that around
70% of classroom questions target lower cognitive
skills, such as recall, while the remaining focus
on higher-order thinking skills, including applica-
tion and analysis (Tofade et al., 2013). Structuring
the dataset to align with these cognitive levels in-
creases its efficacy in training models to predict
MCQ difficulty. This also ensures that models are
exposed to a diverse range of cognitive challenges,
accurately representing the spectrum of question
difficulty typically found in educational settings.

5 Experiments

In this section, we detail the different models,
describe their experimental configurations, and

present the results obtained for the TEEMIL-H and
TEEMIL-K datasets, respectively.

5.1 Models and Experimental setup

In this study, we formalize difficulty estimation as
a classification task and use the architecture pro-
posed by Raina and Gales (2022) for MCQ com-
plexity prediction. For our experiments we employ
a transformer-based architecture with models such
as mBERT, XLM-R, and IndicBERT, each optimized
for processing Indic languages.

The input format for each multiple-choice ques-
tion (MCQ) follows the structure: [CLS] Context
[SEP] Question [SEP] Option A [SEP] Option
B [SEP] Option C [SEP] Option D, where the
context precedes the question and its four answer
options, each delimited by the [SEP] token. This
sequence is fed into the transformer encoder to
produce contextualized representations, which are
subsequently processed by a classification head.
The classification head outputs a probability distri-
bution over the difficulty levels (i.e., easy, medium,
hard). During inference, the model assigns the dif-
ficulty label corresponding to the option with the
highest predicted probability.

All models are fine-tuned on their pretrained
weights, following the experimental protocol out-
lined in Appendix F. The dataset is split into train-
ing and testing sets in an 80:20 ratio. Post-training,
each model is evaluated using standard perfor-
mance metrics Precision (P), Recall (R), and F1-
Score (F1) to assess its accuracy in predicting diffi-
culty levels.

5.2 Results and Analysis

In this section, we establish baseline results for
difficulty estimation by investigating key factors
such as input context , options and presence of
NOTA.



Baseline Results: The evaluation of mul-
tiple transformer-based models mBERT, XLM-R,
and IndicBERT on the TEEMIL-K (Kannada) and
TEEMIL-H (Hindi) datasets offers valuable insights
into their effectiveness in difficulty estimation
(Table 4). Among the models, XLM-R demon-
strates superior performance, achieving the high-
est F1-scores of 0.9681 for Hindi and 0.8987 for
TEEMIL-K, highlighting its robustness in handling
diverse linguistic structures. While mBERT performs
well, particularly on Hindi (F1: 0.9247), it lags be-
hind XLM-R in TEEMIL-K. IndicBERT, on the other
hand, shows lower performance, with F1-scores
of 0.6887 for TEEMIL-K and 0.5415 for TEEMIL-H,
indicating limitations in its handling of these tasks.

TEEMIL-H TEEMIL-K
P R F1 P R F1

mBERT 0.9555 0.9045 0.9247 0.8757 0.8644 0.8597
XLM-R 0.9814 0.9457 0.9681 0.8965 0.9010 0.8987

IndicBERT 0.4873 0.6528 0.5415 0.7015 0.7193 0.6887

Table 4: Results of difficulty estimation using trans-
former models.

Further analysis, using BLEU scores (see Table
3), reveals that TEEMIL-K produces consistently
higher BLEU-1 scores compared to TEEMIL-H,
with values of 44.115 for TEEMIL-K and 38.785 for
TEEMIL-H. The higher BLEU scores for TEEMIL-K
indicate greater lexical similarity between distrac-
tors and correct answers, likely making it harder
for models to differentiate difficulty levels. This is
further supported by higher ROUGE-L and cosine
similarity scores for TEEMIL-K, suggesting stronger
contextual alignment between distractors and cor-
rect answers. Consequently, XLM-R and mBERT ex-
hibit stronger performance on TEEMIL-K, likely due
to their ability to handle the subtle difficulty levels
associated with more closely related distractors.

An in-depth examination of the confusion ma-
trices for XLM-R (see Appendix H) provides ad-
ditional insights. For TEEMIL-H, errors are more
concentrated, suggesting greater stability across
difficulty levels, with most misclassifications oc-
curring between medium and other two categories.
For TEEMIL-K, the errors are more dispersed, im-
plying challenges in consistently classifying dif-
ficulty levels. The models struggle to distinguish
between easy, medium, and hard categories, partic-
ularly in medium and hard questions. The difficulty
in differentiating these categories may stem from
subtle and context-dependent factors, such as the
presence of strong distractors or ambiguities in the

labeling process, influenced by factors like student
variability and cognitive abilities. Lastly we can
see IndicBERT to underperform significantly, we
think this has to do with the pretraining data and
model simplicity of IndicBERT, however more ex-
periments are needed in this regard.

Effect of Options: To assess the impact of op-
tions on difficulty estimation, we trained the trans-
former models using only the [CLS] Context
[SEP] Question [SEP] input format, excluding
the options and distractors. The results, presented
in Table 5, demonstrate that the inclusion of options
significantly influences model performance. When
options are present, the models gain additional con-
textual clues from the distractors. However, when
the distractors are too similar to the correct answer,
as indicated by higher BLEU scores, model per-
formance declines due to the increased difficulty
of distinguishing between the correct answer and
the distractors. On the other hand, when options
are excluded, the task becomes simpler, leading
to improved model performance, particularly in
cases where the distractors closely resemble the
correct answer. These findings suggest that while
options enhance the context for the model, their
distinctiveness and quality play a crucial role in
determining overall model accuracy in difficulty
estimation tasks.

TEEMIL-H TEEMIL-K
P R F1 P R F1

mBERT 0.9422 0.9457 0.943 0.8885 0.8903 0.8894
XLM-R 0.9798 0.9611 0.9698 0.9071 0.9086 0.9077

IndicBERT 0.7086 0.7571 0.7192 0.8118 0.8112 0.8855

Table 5: Results of difficulty estimation using trans-
former models with the exclusion of options from the
input.

Effect of Context: In our earlier results (Table
4), we reported a high F1 score when the model
was provided with the context (paragraph), MCQ,
and options. Interestingly, we observed that the
F1 score increased further upon the removal of the
options. This prompted a deeper investigation into
the role of context in difficulty estimation.

To isolate the effect of context, we conducted an
ablation study by removing the paragraph (context)
and using only the MCQ and options as inputs. The
results of this experiment, summarized in Table 6,
show an improvement in the model’s performance
for TEEMIL-H, surpassing both the original baseline
and the variant without options. Meanwhile for
TEEMIL-K, there is a drop in the results.



This unexpected improvement for TEEMIL-H
may be attributed to two factors: (a) The model
processes all inputs simultaneously, rather than
evaluating each element (context, MCQ, and op-
tions) separately for its contribution to the difficulty.
As a result, it may rely on simpler patterns in the
question phrasing instead of fully leveraging the
contextual information (McCoy et al., 2019). Re-
moving the context simplifies the task, allowing
the model to perform better by focusing on more
straightforward elements. (b) The annotators (stu-
dents), being non-native speakers, may have men-
tally translated or interpreted the questions into
their native language when assigning difficulty la-
bels. Although the model does not receive these
translations directly, the annotators’ simplified un-
derstanding of the questions could have influenced
the labels (Pavlick and Kwiatkowski, 2019). This
inherently leads to proxy patterns, which are more
easily picked up by the model, as these patterns are
simpler and align with the annotators’ interpreta-
tion rather than the full linguistic and contextual
complexity. As a result, performance scores im-
prove and lead to skewed difficulty estimations.

TEEMIL-H TEEMIL-K
P R F1 P R F1

mBERT 0.9742 0.9852 0.9787 0.6086 0.6258 0.5741
XLM-R 0.9825 0.9864 0.9843 0.7122 0.6135 0.5483

IndicBERT 0.9329 0.8874 0.9060 0.4679 0.5874 0.5186

Table 6: Results of difficulty estimation using trans-
former models with the exclusion of context from the
input.

Effect of NOTA: To assess the generalization
capacity of the models, we adopt the approach out-
lined by Wang et al. (2024), introducing None of the
Above (NOTA) as an answer option in the test sets
for both TEEMIL-H and TEEMIL-K, while keeping
the training set unchanged. This adjustment com-
pels the models to identify patterns to determine
whether all given options are incorrect. The results,
presented in Table 7, indicate a slight decline in
performance across both datasets with the intro-
duction of NOTA. For example, in TEEMIL-K, the
F1-score for XLM-R decreases from 0.8987 (without
NOTA) to 0.859 (with NOTA), with a similar trend
observed in TEEMIL-H. We hypothesize that the
inclusion of NOTA introduces ambiguity, thereby
increasing the complexity of the task. For easier
questions, an incorrect selection of NOTA may lead
to an overestimation of difficulty, while for more
challenging questions, the presence of strong dis-

tractors may cause the model to incorrectly select
NOTA. These results suggest that the addition of
NOTA poses additional challenges for difficulty
estimation, complicating the models’ ability to ac-
curately classify question difficulty.

TEEMIL-H TEEMIL-K
P R F1 P R F1

mBERT 0.9315 0.9366 0.9330 0.8630 0.8279 0.8388
XLM-R 0.9316 0.9406 0.9359 0.8634 0.8566 0.8590

IndicBERT 0.5312 0.4932 0.4903 0.5895 0.5813 0.5725

Table 7: Results of difficulty estimation with the substi-
tution of None of the Above (NOTA) in the options.

6 Conclusion

In this work, we introduce the task of multiple-
choice question (MCQ) difficulty estimation for
Indic languages, focusing on Kannada and Hindi,
through the development of two comprehensive
datasets: TEEMIL-K and TEEMIL-H. Each dataset
contains over 4,000 manually annotated MCQs,
designed to support benchmarking in this domain.
We evaluate state-of-the-art transformer models, in-
cluding mBERT, XLM-R, and IndicBERT, to establish
baselines for difficulty estimation. Our experiments
reveal that XLM-R consistently outperforms the
other models on both datasets, setting new bench-
marks, while IndicBERT demonstrates significant
limitations in handling linguistic diversity across
these languages.

Our study also highlights the effects of options
and context on the performance of difficulty esti-
mation, revealing several side effects. Additionally,
we assess the impact of introducing the None of
the Above (NOTA) option during testing, which
adds complexity and results in a noticeable decline
in model performance. This underscores the chal-
lenge of estimating question difficulty when am-
biguous options like NOTA are present.

Overall, we believe the TEEMIL datasets, along
with the benchmarks established in this work, will
be valuable resources for future research, contribut-
ing to the development of automated educational
tools tailored to Indic languages.

7 Limitation

This research has several limitations that leave
room for further exploration. First, the study was
restricted to two Indic languages, Kannada and
Hindi, due to the lack of open corpora and the
high cost of annotation for other low-resource lan-
guages, limiting the broader applicability of the



findings. Second, the dataset used was focused
only on subjects history, civics, geography, eco-
nomics, and physical education resulting in limited
coverage. Third, the difficulty estimation relied on
only three transformer models (mBERT, XLM-R, and
IndicBERT), without considering the performance
of smaller or simpler models, which may have pro-
vided additional insights. Finally, the introduction
of the None of the Above (NOTA) option in MCQs
posed a significant challenge. Although NOTA
adds complexity to difficulty estimation, its impact
was not explored in depth. Addressing how mod-
els handle the ambiguity introduced by NOTA is
crucial for accurately estimating question difficulty
and remains an open area for future research.
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The datasets utilized are publicly available and li-
censed for redistribution (See Appendix I). Annota-
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We paid participants at a rate that was above both
the living wage in our jurisdiction and Prolific’s cur-
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USD (Shmueli et al., 2021). By involving stu-
dents in the annotation process, we ensured that
the dataset reflects authentic insights into the per-
ceived difficulty of questions, aligning more closely
with real-world educational contexts.

We believe that the NLP systems developed from
these datasets have the potential to greatly enhance
educational assessment tools, fostering more effec-
tive and inclusive learning environments. When
applied appropriately, these models and datasets
can help deliver personalized and equitable edu-
cational experiences, improving student learning
outcomes across diverse backgrounds.

However, we acknowledge potential biases in
both the datasets and the models. While the
datasets are constrained to specific languages and
subjects, we have included educational content
spanning classes 6 to 12 to mitigate bias toward
any particular group of students. Moving forward,
we aim to expand the scope of the data to include
more languages and educational domains, ensuring
greater inclusivity and fairness in the development
of educational NLP systems.
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A Guidelines for Paragraph Selection

The guidelines used for paragraph selection is as
follows

• Focus on Learning Goals: Choose para-
graphs that cover important concepts and
skills the students need to learn.

• Bloom’s Taxonomy: Select paragraphs for
different question types:

– Easy: Basic facts and definitions.
– Medium: Paragraphs that explain or ap-

ply concepts.
– Hard: Complex ideas that require analy-

sis or evaluation.

• Balance Cognitive Load: Pick paragraphs
that range from simple recall to more complex
thinking:

– Easy: Straightforward information.
– Medium: Multiple ideas but manageable.
– Hard: Deep understanding and critical

thinking.

• Transfer of Learning: Ensure some para-
graphs help students apply knowledge to new
situations:

– Easy: Directly related to what they’ve
learned.

– Medium: Slightly different context.
– Hard: Completely new situations.

• Contextual Complexity: Choose paragraphs
based on how clear or complex they are:

– Easy: Simple, direct information.
– Medium: Some complexity but clear.
– Hard: Requires understanding complex

ideas.

• Topic Coverage: Select paragraphs from a
variety of topics to cover the entire subject
area.

• Relevance to Core Ideas: Ensure the para-
graphs are directly related to the main ideas
students need to know.

• Length of Paragraphs: Choose paragraphs
that are the right length for creating good ques-
tions, not too long or too short.

• Examples and Case Studies: Include para-
graphs with examples or cases where students
can apply their knowledge.

• Mix of Difficulty: After selection, make sure
there’s a balance of easy, medium, and hard
paragraphs to create a range of question diffi-
culties.

B MCQ selection Criteria

• Alignment with Bloom’s Taxonomy: Ensure
that the MCQ corresponds to one of the cogni-
tive levels in Bloom’s Taxonomy: Remember,
Understand, Apply, Analyze, Evaluate, or Cre-
ate. Each question should engage the student
with an appropriate level of cognitive demand
based on the content of the paragraph.

• Grammatical Clarity: The MCQ must be
grammatically correct and easy to understand,
ensuring clarity in both the question and an-
swer options.

• Answerability: The question must have a
clear, unambiguous answer based on the in-
formation provided in the paragraph. Avoid
questions where the correct answer is not di-
rectly supported by the text.

• Diversity: Ensure that there is a diversity of
question types (e.g., what, who, how, etc.)
across the selected MCQs to cover different
forms of inquiry. Avoid repetition of similar
question styles within the dataset.

• Complexity: Consider the complexity of the
question. It should challenge students at an
appropriate level, based on the content of the
paragraph and Bloom’s level.

C Annotation on Google Sheets

Annotation done using google sheets via picker as
shown in Figure 2. The annotation team details are
in Table 8. All the instructors are school teachers
with Masters Degree, teaching the subjects which
are selected for MCQ generation.
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Figure 2: Annotation using google sheets.

Participants Gender Education Native
Language

Language
of Annotation

Instructor 1 Female Masters Degree Tamil

NA
Instructor 2 Female Masters Degree Kannada

Expert 1 Male Masters Degree Tamil/Kannada
Expert 2 Male Bachelors Degree Hindi
Student 1 Male class 8 Tamil Hindi
Student 2 Female class 10 Marathi Hindi
Student 3 Male class 10 Kannada Kannada
Student 4 Female class 11 Tulu Kannada

Table 8: Qualitative comparison of Annotation team

D Questionnaire for Resolving annotation
ambiguity

• Did you find the answer directly in the text, or
did you have to think about it more?

• Did you have to compare multiple options that
seemed similar?

• Was there anything in the question that con-
fused you or made you think harder than
usual?

• Did you need to use any specific strategies
(like elimination or inference) to find the cor-
rect answer?

• Was the language or vocabulary used in the
question difficult or unfamiliar?

• Did the structure or length of the question
make it harder to understand?

E Question Types in TEEMIL

Table 9 shows statistics of various question types
in TEEMIL-H and TEEMIL-K dataset.

F Hyperparameters

Various hyperparameters are as shown in Table 10.

Question
Category TEEMIL-H TEEMIL-K

How 348 8
What 2078 3173
When 17 21
Where 45 58
Which 1344 330
Who 678 416
Why 136 21

Other 44 188

Table 9: Question types in TEEMIL-H and TEEMIL-K
dataset.

Model Name mBERT XLM-R IndicBert

API bert-base-
multilingual-cased

xlm-roberta-base
ai4bharat/
indic-bert

Batch Size 32 16 32
Learning Rate 5e-5

Epochs 10
Warm Up Steps 500

Optimizer AdamW

Table 10: Experimental Setup used for difficulty Esti-
mation

G Dataset Analysis - Contd

Here we assume that length of the paragraph as
the direct determinant of the difficulty. As such
we analyze the relationship between the length of
paragraph and difficulty labels to form set of rules.
See Figure 3 and 4 respectively.

Figure 3: Relationship between length of paragraph and
difficulty for TEEMIL-H.



Figure 4: Relationship between length of paragraph and
difficulty for TEEMIL-K.

H Confusion Matrices of XLM-R with
TEEMIL

Confusion matrices are shown in Figure 5 & 6.

Figure 5: Confusion Matrix of XLM-R on TEEMIL-H.

Figure 6: Confusion Matrix of XLM-R on TEEMIL-K.

I Copyright Details of Text book

Copyright detail is as in Figure 7.

Figure 7: Copyright and License details of Textbooks.
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